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We investigate the statistical properties of two-dimensional random cellular systems~froths! in terms of their
shell structure. The froth is analyzed as a system of concentric layers of cells around a given central cell. We
derive exact analytical relations for the topological properties of the sets of cells belonging to these layers.
Experimental observations of the shell structure of two-dimensional soap froth are made and compared with
the results on two kinds of Voronoi constructions. It is found that there are specific differences between soap
froths and purely geometrical constructions. In particular these systems differ in the topological charge of
clusters as a function of shell number, in the asymptotic values of defect concentrations, and in the number of
cells in a given layer. We derive approximate expressions with no free parameters which correctly explain
these different behaviors.@S1063-651X~96!13111-1#

PACS number~s!: 82.70.2y, 68.90.1g

I. INTRODUCTION

Materials consisting of cellular structures such as metal
grains and biological tissues are common in nature@1,2#.
Among these systems, soap froth is considered to be the
paradigm for the study of trivalent two-dimensional cellular
structures. The structural analysis of two-dimensional cellu-
lar patterns has been made by many researchers and many
interesting results have been obtained@3–12#. These studies
of the topological properties of soap froth can be summa-
rized in several laws such as Lewis’ law@13# on the statistics
of cell area, von Neumann’s law@14# on the growth rate of
n-sided cells, the scaling law@6# on the probability distribu-
tion of the cells, and Aboav-Weaire’s law on nearest-
neighbor correlation@15,16#. So far, the evolution of soap
froth after the scaling state defined as stationary probability
distribution of cell sides has been explained by several theo-
ries @17–20#, indicating that correlation effects are not mani-
fested in the analysis of area scaling law. However, a more
detailed analysis beyond the area scaling law has been done
@21# and strongly suggests the importance of clarifying the
role of correlation effects. Moreover, to our knowledge, there
has been no experimental investigation until recently@22# on
the statistical properties and correlation effects beyond near-
est neighbors in two-dimensional soap froth. With the ad-
vance of experimental techniques and data analysis
@23,24,22#, it is natural to investigate the structural charac-
teristic of soap froth beyond nearest neighbors. Here we de-
rive systematically exact expressions for the topology of the
froth structure beyond first neighbors. Our results will serve
as a mathematical framework for our data analysis, which
enhances our ability to test current theoretical ideas and our
understanding of topological ordering processes in soap froth
@25–29#. Our aim is to extract more information about the
differences between physical soap froths and computer gen-
erated two-dimensional cellular patterns, such as the Voronoi
construction of points randomly scattered on the plane.

Soap froths are trivalent~three edges meeting at a vertex!
two-dimensional cellular patterns. Any two-dimensional
~2D! froth can be analyzed as being structured in concentric
layers of cells around a given central ‘‘germ’’ cell
@25,30,22#. The first layer of the shell structure consists of
neighbors of the germ cell, the cells of the second layer are
the neighbors that externally bound the first layer, etc.~see
Fig. 1!. More precisely, the layers are closed rings of cells
which are at the same topological distance from the germ
cell ~the topological distance between two cells is defined as
the minimum number of edges that a path must cross to
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FIG. 1. Shell structure and defects in trivalent two-dimensional
froth. The defects are shaded and the number denotes the topologi-
cal distance from the center cell labeledO, which is a deformed
heptagon.

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5482~11!/$10.00 5482 © 1996 The American Physical Society



connect these two cells!. The shell is a closed loop of edges
which are the interface between two subsequent layers~see
Fig. 1!. ~The definition here is consistent with Ref.@30#.
Note that in our previous work@22#, the word ‘‘shell’’ is
used to indicate the layer used in this paper.!

The shell structure has some physical relevance in natural
froths and in problems of the topologically stable partition of
space by cells. In foams the evolution of the cellular struc-
ture is ruled by the process of diffusion of the gas inside a
given bubble toward its neighbors. The topological distance
j between two cells is the minimum number of soap mem-
branes that the gas molecules have to cross to pass from one
cell to the other. The molecules which diffuse from a given
central bubble move through the shell structure, reaching the
cells of each layer with an approximately equal probability.
An analogous problem where the shell structure has physical
relevance is the random walk through a barrier network. In
this case the topological distancej is the minimum number
of barriers that must be crossed from a starting cell to a given
final cell. The number of cells in the layerj is the number of
final states with approximately equal probabilities. More
generally, any perturbation on a given cell~cell growth, cell
division, mechanical stress, cell coalescence, electrical sig-
nal, etc.! propagates in the whole system through the shell
network, and reaches with approximately equal intensity all
cells at the same topological distance from the perturbed cell
at about the same time. These considerations provide the
motivation for introducing shell structure analysis for froth.

The quantities investigated for a shell at topological dis-
tancej from a givenn-sided germ cell are the total number
of cells in the layer (Kj ), the average number of sides of the
cells belonging to the layer (mj ), and the topological charge
(Qj ) of the cluster of cells delimited by the shellj . Here, the
topological charge of a cell withn sides is defined as
q562n andQj is defined as the sum over the topological
charges of all the cells inside the cluster delimited by the
shell j which separates the layerj from the layerj11. Note
that all these quantitiesKj , mj , andQj can depend onn.

The experimental investigation of the statistical properties
of natural and computer generated froths in terms of the shell
structure gives some interesting results. For instance, we find
that the number of cells in a layer at a topological distance
j from the germ cell increases with distance following a
linear lawKj5Cj1B with slopeC;9 ~see also Ref.@22#!.
This is in contrast to simple geometrical considerations that
the perimeter of the shell cluster increases with the radius
with a slope of approximately 2p. Moreover, we find that
the topological charge of the cluster bounded by the shellj is
negative, and decreases linearly withj . This behavior is par-
ticularly surprising since the total topological charge of a
froth is a constant finite quantity independent of the network
itself, and is related to the space curvature by the Euler for-
mula associated with the Gauss-Bonnet theorem@31,32#.
Therefore, the set of cells belonging to a layer has peculiar
statistical properties which are different from the one for the
whole froth. The aim of the present paper is to study these
peculiarities with an exact analytical approach, and to find
approximate solutions with no adjustable parameters which
can be compared with the experimental observations.

The plan of the paper is as follows. In Sec. II, we derive
the statistical properties of the shell structure for a special

class of froths called shell-structured-inflatable~SSI! froths
@30#. These froths are particularly convenient since they can
be constructed layer by layer in a recursive way according to
an inflationary procedure. In Sec. III, we study the correla-
tion length in SSI Euclidean froths. Approximate expressions
for Kj andQj are also derived. In Sec. IV, the results ob-
tained for SSI froths are generalized to non-SSI systems. In
Sec. V, we find approximate expressions forKj andQj in the
general case of non-SSI froths. In Sec. VI, experimental re-
sults are presented and compared with analytical predictions.
Section IV contains a conclusion that emphasizes the main
results. In Appendix A, a generalization of Weaire’s sum
rule @16# is derived. In Appendix B, we find an expression
for the fluctuations of the topological charge. Finally, in Ap-
pendix C, a proof of the correlation theorem of euclidean SSI
froth is given.

II. STATISTICAL PROPERTIES IN
SHELL-STRUCTURED-INFLATABLE FROTHS

Any froth can be analyzed as structured in concentric lay-
ers of cells which are at the same topological distance from a
given central cell. These concentric layers are the shell struc-
ture of the froth. In this structure the cells forming the layer
j can be divided into two categories. Some cells simulta-
neously have neighbors in the layersj21 and j11. These
cells make themselves closed layers and constitute the ‘‘skel-
eton’’ (sk) of the shell structure. Other cells~or clusters of
cells! are inclusions between the layers of the shell skeleton
~they have neighbors in the layerj21 or other topological
inclusions but not in the layerj11). The shell skeleton is
itself a space-filling froth hierarchically organized around the
germ cell. Once a germ cell is chosen, the shell structure and
its skeleton are univocally defined, but different germ cells
generate different skeletons. We call a froth shell-structured
inflatable if it is free of topological inclusions.~In this paper
these inclusions are also called topological defects.! For SSI
froths the shell structure and its skeleton coincide.

In this section we analyzed only SSI systems~no topo-
logical defects!; the results obtained for such a class of sys-
tems are extendible to froths with topological defects. The
advantage of studying SSI froths is that in these systems the
shell structure can be constructed by using an inflationary
recursive process. In particular, one finds that the number of
vertices in successive shells is related by the following map
@30#:

S Vj
1

Vj
2D 5S sj 21

1 0 D S Vj21
1

Vj21
2 D , ~1!

wheresj5mj24, andmj is the average number of sides per
cells in layer j . The quantityVj

1 (Vj
2) is the number of

vertices attached to edges directed outward from shellj ~di-
rected inward to shellj ) ~see Fig. 1!. The matrix equation~1!
is the logistic map@34#. It is a dynamical map from the
central germ cell (j50) to the whole froth.

Since our 2D froth is trivalent~three edges meeting at one
vertex!, the number of cells in layerj isKj5Vj

2 . In terms of
these quantities Eq.~1! can be written as a recursive equation

Kj115sjK j2Kj21 . ~2!
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The initial conditions areV0
25K050 andV0

15K15n is the
number of neighbors of the central germ cell.

Given the set of parameters$sj%, the solutions of Eqs.~1!
or ~2! are particular trajectories in the plane (j ,Kj ). When
sj is equal to a constants, one finds that the parameters
separates the map into different classes@30#. Valuesusu,2
are associated with the elliptic region which has bounded,
finite trajectories. The regions.2 is the hyperbolic region
associated with exponential trajectories. The points52 di-
vides the elliptic region from the hyperbolic region, and cor-
responds to tilings of the Euclidean plane. In this case one
finds that the solutions are linear trajectoriesKj} j . In gen-
eral, whens depends onj , one can note that bounded trajec-
tories always correspond to froths which are tiling elliptic
manifolds, whereas unbounded trajectories which grow
faster thanj correspond to tilings in hyperbolic manifolds.
The Euclidean space has trajectories between these solutions
associated with spaces of opposite curvatures. They are un-
bounded trajectories which grow asymptotically as a linear
law (Kj} j ).

One finds that the total topological charge of a cluster of
cells bounded by the shellj can be written in terms of num-
bers of vertices coming into and going out from the shellj ,

Qj5(
i

~62ni !562Vj
11Vj

2, ~3!

where the sum runs over all the cellsi in the cluster andni is
the number of sides of the celli @35#. Equation ~3! is a
general expression~valid also for non-SSI systems!. It states
that the total topological charge inside a cluster depends only
on its boundary. For SSI froths, Eq.~3! can be rewritten as

Qj562Kj111Kj . ~4!

The inverse of this equation provides a relation between the
number of cells in the layerj and the topological charge of
the cells inside the cluster delimited by the shellj ,

Kj56 j2(
i50

j21

Qi56 j261n2(
i51

j21

Qi , ~5!

where we defineQ0562n. Let us now make use of these
recursive relations in order to evaluate the quantitiesKj ,
Qj , andmj in the shell structure.

A. First shell: The Aboav-Weaire law

Consider a shell structure around ann-sided germ cell.
The number of cells constituting the first layer (j51) is

K15n, ~6!

and the topological charge inside the cluster delimited by the
first shell is by definition

Q15~62n!1~62m1!K1 . ~7!

Using the sum rule~46! ~see Appendix A!, one obtains the
average value

^Q1&52m2 , ~8!

with m25^(n26)2&. Here the averageŝ()& are over the
cell-side distribution:̂ ()&5(np(n)(), with p(n) being the
probability of ann-sided cell in the whole froth. One can
introduce the fluctuation part of topological chargeQ1 as its
deviation from the average value:G1[Q12^Q1&, wherea
priori the fluctuation part can be any function ofn satisfying
the condition̂ G1&50. In terms of the fluctuation, the charge
Q1 can be written as

Q15~62n!1~62m1!n52m21G1 . ~9!

Equation~9! gives the relationship between the number of
sides (n) of a given germ cell and the average number of
sides (m1) of the cells neighboring thisn-sided cell. In lit-
erature, such a relation has been widely studied since Aboav
empirically found the linear law: (m126)n5m22a(n26)
@15#. One can see immediately that Aboav-Weaire’s law is
obtainable from Eq.~9! by imposing a linear form for the
fluctuation part@i.e., G15e1(62n), with e1512a#. This
linear dependence can be interpreted in terms of the screen-
ing of the central chargeQ0562n by the charges of the first
layer. The total screening charge in the first layer is
(62m1)n and its deviation from the average is

~62m1!n2^~62m1!n&52a~62n!. ~10!

We can therefore interpreta as a screening factor:a51
corresponds to a total screening of the internal charge,
whereasa50 corresponds to absence of screening.

Aboav-Weaire’s law is generally associated with the pres-
ence of topological correlations between nearest-neighbor
cells. In Appendix B we discuss in detail the effects of finite
range correlations in froths. Let us note that an arrangement
of cells free of correlation~called a topological gas@36#! has
m1561m2/6 @37#, which leads to an Aboav coefficient
a52m2/6, andm1 is independent ofn.

B. Generic j shell

The average topological charge inside the cluster delim-
ited by shellj is

^Qj&5(
i51

j

^~62mi !Ki&. ~11!

Indeed, the topological charge is an additive quantity and
therefore^Qj& is the sum of the topological charges con-
tained in the layersi „^(62mi)Ki&… which are inside the
cluster with radiusj ( i< j ). As before, we introduce the
fluctuations of the topological charge in a cluster

G i5Qi2^Qi&. ~12!

By using the generalized Weaire identitŷ(62mj )Kj&
5^(62n)Kj& @Eq. ~A2! in Appendix A# and by substituting
Eq. ~5! into Eq. ~11!, we can express the portion of charge
contained inside the layerj in terms of the topological-
charge fluctuations

^~62mj !Kj&52m22(
i51

j21

^~62n!G i&52(
i50

j21

^~62n!G i&,

~13!
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where we usedG0[(62n). The total charge of the cluster
inside the shellj is therefore

^Qj&52m2 j2(
i51

j21

~ j2 i !^~62n!G i&

52(
i50

j21

~ j2 i !^~62n!G i&. ~14!

Note that, in the absence of fluctuations (G i50 for i.0),
Eq. ~13! gives a topological charge per layer equal to
2m2, and therefore a total charge which decreases linearly
in j with slope2m2.

Using Eq.~14! and the definition ofG j , one can rewrite
Eq. ~5! in terms of the fluctuations

Kj56 j2(
i50

j21

Qi

56 j2~62n!2(
i51

j21

Qi

56 j1n261
j ~ j21!

2
m22(

i51

j21

G i

1(
i51

j22
~ j2 i !~ j2 i21!

2
^~62n!G i&

56 j2(
i50

j21

G i1(
i50

j22
~ j2 i !~ j2 i21!

2
^~62n!G i& .

~15!

These relations forKj , Qj , andmj are exact results valid
for any SSI froth. The fluctuationsG j area priori unknown
functions subjected to the constraint^G j&50. Other con-
straints on these fluctuations come from the space-filling
condition.

III. SHELL STATISTIC OF EUCLIDEAN FROTHS

Let us consider a Euclidean 2D froth. In such a froth the
number of cells per layer must grow linearly with the dis-
tance in the asymptotic limit. We will show that fluctuations
in the topological charge (G jÞ0) are essential for filling
space with disordered (m2Þ0) Euclidean SSI cellular sys-
tems. Consider a system withG i50 for i>1 ~recall
G0562n), from the next to last equality of Eq.~15!, one
obtains that the number of cells in the generic layerj in-
creases quadratically with the distanceKj} j 2m2. Such a
froth is realizable only in a space with intrinsic dimension
D53 and thus it is not two-dimensional Euclidean. In natu-
ral froths and in computer-generated cellular system the shell
structure is organized in order to keep the froth Euclidean,
and experimentally one finds that the number of cells per
layer increases linearly inj after the first few layers@22#.
Such organization can be provided by theG ’s, which must be
different from zero at least for the first few shells.

We have the following interesting theorems~see Appen-

dix C for a proof.! For a Euclidean SSI froth withm2Þ0 that
obeys Aboav-Weaire’s law, cells must be correlated at least
between the third neighbors. This theorem can be restated
into two parts:~1! If a Euclidean SSI froth with nonzero
second moment obeys Aboav-Weaire’s law, the minimum
n in order that^Kj&} j for j>n is 3. ~2! Under the same
hypothesis as~1!, and if the topological correlations vanish
after thejth layer, thenj>n. Therefore,~2! also means that
j>3. An important point in the theorem is that the Aboav
parametera is a free parameter, for otherwise, we can have
an even smallern. ~Indeed, if we restricta to 1, thenn51,
and if we restricta to 2, thenn52, and if we do not put any
restriction ona, thenn>3.! Next we will explore some con-
sequences of this theorem.

For a space-filling Euclidean froth where the correlation
length is minimal (j5n53) and Aboav-Weaire’s law is sat-
isfied with G15(12a)(62n), Eq. ~C3! implies
(12a)m21^(62n)G2&52m2. A solution for this condition
is given byG25(a22)(62n). Since we havej5n53, we
can setG j50 for j>3 @from Eqs.~C3! and~B3!#. With these
values ofG j , we can work out the solution for the number of
cells per layer,

K15n, K25121m21~22a!~n26!,

Kj5„61~32a!m2…j2~522a!m2 for j>3. ~16!

and the topological charge

Q152m21~12a!~62n!,

Q252~32a!m21~a22!~62n!,

Qj52~32a!m2 for j>3. ~17!

The solution Eq.~16! for the trajectoriesKj is qualita-
tively in agreement with the experimental data. The number
of cells per layer versusj follows a linear law with slope
61(32a)m2 and intercept2(522a)m2. Assuming typical
valuesa.1 andm2.1.5, we obtain 9 and24.5, respec-
tively, for the typical slope and intercept. Note that a simple
geometrical approach will suggest a linear growth of the
number of cells of the perimeter of the shell cluster with a
slope equal to about 2p, which differs from the one we have
found.

Equation ~17! predicts that in SSI minimally correlated
froths the topological charge is constant after the second
shell. This is in contradiction to the experimental data which
show topological charges decreasing linearly withj . To re-
solve this contradiction with experimental data, we can con-
sider the following scenario. If we take the fact thatQj} j for
large j , then Eq.~5! implies thatKj} j 2. But our experimen-
tal froth is Euclidean withKj} j . Thus the only possible way
to resolve this contradiction to experimental data without
invoking the results on a non-SSI Euclidean froth is to con-
clude that the assumption thatj5n53 in the above analysis
is incorrect. Thus this conclusion, which insists on using the
results of a SSI Euclidean froth, leads one to suspect that
topological correlation has a longer range:j.3. However,
this is actually misleading, as we have no good reason to
insist on the assumption that the real froth is SSI Euclidean.
Indeed, we have enough evidence that the real froth is a
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non-SSI Euclidean froth, so that the topological correlation
can vanish rather early, and stillKj} j andQj} j for large
j . This point is also valid for a computer-generated froth. In
Sec. IV we show that the topological defects provide a
mechanism which correctly gives the behavior of the topo-
logical charge and the slope in the linear law of the trajecto-
riesKj .

IV. EFFECTS OF THE NONINFLATABLE INCLUSIONS

The ideas presented in preceding sections for shell-
structured froths are still applicable when we have noninflat-
able inclusions. In this section, we indicate the appropriate
corrections. We use the symbolsn, Kj , Qj , mj , andm2 to
indicate the quantities associated with the global froth~shell
skeleton plus topological inclusions! and we use the notation
Kj
sk, Qj

sk, andmj
sk for the quantities associated with the shell

skeleton only. Finally, we useKj
d andmj

d to indicate the
number of defective cells and their average number of sides.
Note thatK0

d50 always~since any cell of the froth can be
the germ cell!. One has the simple relation

Kj5Kj
sk1Kj

d . ~18!

In the general case when noninflatable inclusions are present,
the relations previously obtained for the SSI froth are appli-
cable to the quantities associated with the shell skeleton. In
particular, relations~4! and ~5! become

Qj
sk562Kj11

sk 1Kj
sk ~19!

and

Kj
sk56 j2(

i50

j21

Qi
sk. ~20!

On the other hand, expression~3! for the total topological
charge of the cluster delimited by shellj remains unchanged:

Qj562Vj
11Vj

2 ; ~21!

here the quantitiesQ andV6 are associated with the global
froth ~shell skeleton plus topological inclusions!. This equa-
tion is the topological analog of the Gauss theorem of elec-
trostatic. The charge~topological! inside a region of space is
associated with the net flux~of edges! which crosses the
external surface~shell!. In the absence of topological inclu-
sion ~the SSI case! the flux of edges between two adjacent
shells is uninterrupted~any edge outgoing from shellj ends
in shell j11, i.e.,Vj11

2 5Vj
1). In the general case, the topo-

logical inclusions trap the edge fluxes, and the previous iden-
tity must be modified as follows:

Vj11
2 5Vj

12h j11Kj11
d , ~22!

where h j11 is the average number of edges which are
trapped by one defect in the layerj11. One can easily verify
thatVj

25Kj
sk. By substituting Eq.~22! andVj

2 into Eq.~21!,
one obtains

Qj562Kj11
sk 1Kj

sk2h j11Kj11
d , ~23!

which is the generalization of Eq.~4!. By substituting Eq.
~19! into Eq. ~23!, one obtains

Qj5Qj
sk2h j11Kj11

d . ~24!

Therefore, the topological charge inside shellj is equal to
the charge associated with the shell skeleton minus a contri-
bution due to defects attached to the external shell. This im-
plies the important fact that defects inside the cluster do not
contribute to the total charge. Moreover, note that the defects
attached to the external shell always decrease the topological
charge in the shell with respect to the value associated with
the shell skeleton.

A. First shell and Aboav-Weaire’s law

The number of cells making the first layer around an
n-sided central cell isK15n. By using the sum rule~A2!
obtained in Appendix A, one can calculate the average topo-
logical charge inside the first shell:

^Q1&5^~62n!&1^~62m1!K1&5^~62n!n&52m2 .
~25!

From this relation and Eq. ~24!, it follows that
^Q1

sk&52m21^h2K2
d&.

As in the SSI case, one can introduce fluctuations of the
topological charge around its average value,

G j5Qj2^Qj&. ~26!

In terms of these fluctuations and using Eq.~25!, the charge
contained in the first layer can be written as

Q15~62n!1~62m1!K152m21G1 . ~27!

This equation gives a relation between the number of sides
(n) of a given cell and the average number of sides (m1) of
the cells surrounding thisn-sided cell. In the particular case
that the fluctuation is linear inn, G15(12a)(62n), we
arrive at Aboav-Weaire’s law ~i.e., nm15(62a)n
1m216a @15#!. Aboav’s coefficienta can be interpreted
~see Sec. II A! as the factor that represents the screening of
the central charge due to the surrounding cells. By following
this interpretation one can associatea51 with a total screen-
ing, anda50 with the absence of screening. A typical value
for this coefficient in natural cellular structures~soap froth,
alumina cuts, etc.! is a.1.2; values around 0.6 are charac-
teristic of Voronoi froths constructed from Poissonian points,
whereas random network generated by performingT1 trans-
formations on regular lattice have negative Aboav’s coeffi-
cientsa.21.

B. Generic j shell

The average value of the topological charge inside the
layer j can be calculated by using the sum rule~A2! @i.e.,
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^(62mj )Kj&5^(62n)Kj&; see Appendix A#, and the ex-
pression~20! for Qj

sk to obtain

^~62mj !Kj&5^~62n!Kj
d&1^~62n!Kj

sk&

5^~62n!Kj
d&2(

i50

j21

^~62n!Qi
sk&

5^~62n!Kj
d&2(

i50

j21

„^~62n!Qi&

1^~62n!h i11Ki11
d &…

5^~62n!Kj
d&2(

i50

j21

„^~62n!G i&

1^~62n!h i11Ki11
d &…. ~28!

The average total charge of the cluster inside shellj is the
sum over the charge of individual layers. From Eq.~28! it
follows that

^Qj&5(
i50

j21

@^~62n!Ki11
d &2~ j2 i !„^~62n!G i&

1^~62n!h i11Ki11
d &…#. ~29!

In this expression, the i50 term is ^(62n)K1
d&

2 j (m21^(62n)h1K1
d&), sinceG0562n. From Eq. ~20!,

using Eq.~29! and the definition ofG i , the number of cells
of the shell skeleton in the layerj is

Kj
sk56 j2(

i50

j21

Qi
sk56 j2(

i50

j21

~Qi1h i11Ki11
d !

56 j2(
i50

j21

~G i1^Qi&1h i11Ki11
d !

56 j2(
i50

j21

„G i1h i11Ki11
d 1~ j2 i !^~62n!Ki

d&…

1(
i50

j22
~ j2 i !~ j2 i21!

2
„^~62n!G i&

1^~62n!h i11Ki11
d &…. ~30!

This is the generalization of Eq.~15! which takes into ac-
count noninflatable inclusions. These relations have the
beauty of being exact and the privilege of being useless for
predicting properties of real space-filling cellular systems. In
order to compare with experiments, we must use some
simple physical approximations that will provide predictions
for the asymptotic behaviors ofKj andQj , and the percent-
age of defects.

V. EUCLIDEAN FROTHS AND NON-SSI INCLUSIONS

In the absence of defects and fluctuations, Eq.~30! im-
plies that the number of cells in each layer grows very fast
(Kj} j 2). In principle, such a fast growth is realizable in the

2D plane by increasing continuously the roughness of the
cluster surface, enlarging the available space for additional
cells in the layer. In practice, after some layers the rough
surface of the cluster starts to self-intersect, thereby generat-
ing non-SSI inclusions~topological defects in the shell struc-
ture!. These inclusions of defective cells provide a way to
smooth the shell surface and to keep the froth Euclidean as a
consequence. Therefore, the defects play a very important
role in the froth organization.

Soap froths and computer-generated random cellular sys-
tems show asymptotically a linear increment in the number
of cells per layer with the distance from the germ cell. Let us
therefore consider a Euclidean froth whereKj} j for any
j>n. In contrast to the SSI case, when we have defects, this
condition of linear growth ofKj does not introduce any con-
straint on the fluctuationsG j . Indeed, the number of defects
Kj
d is a free parameter that the system can adjust in order to

control the fluctuations in the topological charge and simul-
taneously keep the froth Euclidean. Analogously, the defects
can play an important role in the reduction of topological
correlations. In Sec. III we found that a SSI Euclidean froth
which satisfies Aboav-Weaire’s law must be correlated at
least between third neighbors. The defects enlarge the free-
dom for the construction of the cellular system around the
germ cell by removing the constraints on the fluctuations.
~Without these constraints on the fluctuations, one can con-
struct a Euclidean froth which satisfies the Aboav-Weaire
law and which is correlated only between first neighbors.!
Therefore the presence of defects can strongly reduce the
correlations.

Consider a froth which is minimally correlated and com-
patible with Aboav-Weaire’s law with a freea parameter.
From Eq.~B3! ~see Appendix B! it follows that such a froth
can be uncorrelated after the first neighbors (j>1). ~Indeed,
for the topological gas,j50 and this corresponds to
a52m2/6.) In this case, using Eq.~30! and G1
5(12a)(62n), one obtains

K25121m21~22a!~n26!2h1K1
d1~12h2!K2

d

1^~n26!~12h1!K1
d&. ~31!

Transcurating the contribution from the defects in the first
layer (K1

d!1) and fixingh251, Eq. ~31! becomes

K2.121m21~22a!~n26!. ~32!

Equation~B3! gives

G25S 12a1
~22a!2m2

121m2
D ~62n!. ~33!

By using Eq.~30!, one has

K3.181~42a!m21S 322a1
~22a!2m2

121m2
D ~n26!2K2

d ,

~34!

where we used the same approximations as for Eq.~32! plus
the hypothesish351.

These relations are derived using the assumptions that
K1
d!1, j52, andh25h351. The first conditionK1

d!1 is
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quite reasonable; as it is experimentally in real or computer-
generated froth, the first few shells have a small number of
defects. The second condition is a condition working on the
conventional wisdom that the froth has rather short range
correlations. In any case, this is a working hypothesis for
deriving Eqs.~32!, ~33!, and ~34!, which are all equations
needed for comparison with experimental data in Sec. VI. As
for the third conditionh25h351, this is actually a reason-
able assumption ash j11 is the average number of edges
which are trapped by one defect in the layerj11, and many
defects contribute in general only one extra edge to the cor-
rection in the defining Eq.~22!.

Asymptotic behavior in Euclidean froths

In a Euclidean 2D froth, the space-filling condition im-
plies that in the asymptotic limit the number of cells per
layer grows linearly with the topological distance and, con-
sequently, at each layer this number is incremented by a
constant amount. In a froth where the cells are uncorrelated
after a given topological distancej, this rate of increment
must be a constant parameter characteristic of the whole
froth, and independent of the particular central cell. The de-
pendence ofKj on the number of sides (n) of the central cell
can only be an additive constant@i.e.,Kj5Cj1B(n)#. From
a geometrical point of view this additive quantity is associ-
ated with the size of the central core made by the first shell
and its neighbors. In a system that is uncorrelated after the
first shell, the length of the perimeter at shellj is given by
the perimeter of this core„B(n)… plus a term linearly depen-
dent on the distance (Cj). The generalized Aboav-Weaire
relation @Eq. ~A2! in Appendix A# gives

^~62mj !Kj&5^~62n!B~n!& for j>j. ~35!

By assumingj52 and using Eq.~32!, we obtain

^~62mj !Kj&5^~62n!K2&.2~22a!m2 for j>2. ~36!

Equation ~36! states that the topological charge contained
inside any layer is a constant quantity equal to
2(22a)m2. It follows that the total topological charge in-
side shellj decreases linearly withj ,

^Qj&52~22a!m2 j1const for j@1. ~37!

Note that the total topological charge in the froth must be
lower than 12@31#. Indeed, a froth with chargeQ512 is a
closed cellular system which is tiling of a surface topologi-
cally equivalent to a sphere. Therefore, from Eq.~37! it fol-
lows that the Aboav coefficients must be smaller than or
equal to 2 for Euclidean 2D froth withK2 given by Eq.~32!.

In a Euclidean 2D froth, the number of cells per layer
grows linearly with slopeC asymptotically. Let us suppose
that the percentage of defects with respect to the total num-
berKj of cells in the layers is a constantL independent of
the topological distance in this limit. Then the number of
cells in the shell skeleton must also grow linearly withj
@since^Kj

sk&5(12L)^Kj& and^Kj& is linear in j #. Equation
~20! indicates that̂ Kj

sk& can be linear if the average topo-
logical charge associated with the shell skeleton^Qj

sk& is
constant. This implies@Eq. ~24!#

^~62mj !Kj&5^Qj2Qj21&

5^Qj
sk2Qj21

sk &2^h j11Kj11
d 2h jK j

d&

5~^h jK j
d&2^h j11Kj11

d &! for j@1. ~38!

By supposing that the parameterh j5h is independent ofj
for large j , using Eq.~38! we obtain

^~62mj !Kj&.2hL~^Kj11&2^Kj&!52hLC for j@1,
~39!

which predicts that the charge decreases linearly withj with
a decrement ofhLC per layer. From Eq.~39!, using the
expression formj obtained in Appendix B@Eq. ~B1!# valid
for layers of cells uncorrelated with the germ cell~in present
case forj.2), we obtain

mj5mj
un562

^~62n!Kj&

^Kj&
.61

hLC

Cj1^B&
.61

hL

j
. ~40!

Supposing that̂ Kj& grows linearly from the second shell
~i.e., fixing n51), from Eqs.~31! and ~34! we obtain the
slope

C.^K3&2^K2&.61~32a!m22^K2
d&. ~41!

By comparison between Eqs.~36! and ~39!, and using
expression~41!, we obtain an expression for the percentage
of defects,

hL.
~22a!m2

61~32a!m22^K2
d&

.
~22a!m2

61~32a!m2
, ~42!

where we assumed̂K2
d&!61(32a)m2. From Eq.~42! one

notes that a froth can be free of defects only ifm250 or
a52. The first case (m250) corresponds to the hexagonal
lattice, which is SSI and therefore free of defects. The second
case (a52) corresponds to a froth where the Aboav param-
eter takes the maximum allowed value for a Euclidean froth.
This is a very peculiar froth which has a constant topological
charge in the shell clusters and does not need defects to fill
the plane. So far such a froth has not been observed, to our
knowledge. Note thata52 is a critical value since froths
with a.2 are closed elliptic systems. That might suggest
that the valuea52 is an upper limit which cannot be
reached for Euclidean froths.

In an earlier paper@22#, we used the shell model to test a
generalization of Aboav-Weaire’s law to shells beyond the
first. These analyses revealed a universal topological relation
on the average numbermj of sides per cell to the number of
cellsKj in the j th layer of a given center cell withn sides. A
plot of mjK j vs Kj shows a slope of (62a) for j51
~Aboav-Weaire’s law! and a slope of 6 forj>2 for all
samples. The results are universal for soap froths in the scal-
ing state with different preparations, different times, and dif-
ferent temperatures. With the smallhL approximation and
Eq. ~40!, we can now provide a quantitative explanation to
the experimental results. The average number of neighbors
mj in layers of cells uncorrelated with the central cell
( j>j) is given by Eq.~B1!. Multiplying this expression by
Kj we have
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mjK j5mj
unKj5S 62

^~62n!Kj&

^Kj&
DKj ~ j>j!. ~43!

In the asymptotic limit, using the approximations introduced
above, we obtain

mjK j.6Kj1~22a!m2 ~ j>j!, ~44!

which is the extension of Aboav-Weaire’s law to higher shell
numbers.

VI. EXPERIMENTAL RESULTS AND COMPARISON
WITH THE THEORETICAL PREDICTIONS

The soap froth chamber consists of two 1.6-cm-thick rect-
angular plexiglass plates separated by a 0.16-cm-thick
spacer. The effective working area for the froth is 26.7
336.8 cm2, which can be filled with more than 20 000
bubbles as the starting condition. Soap bubbles of different
sizes are pumped into the chamber through an inlet to create
a relatively random froth. The chamber is filled with excess
bubbles such that excess fluid can be forced out of the cham-
ber through another outlet after the soap froth has been
drained for a few minutes by setting the chamber vertically.
Thus the froth has a negligible volume fraction of liquid to
air @33#. The chamber is then sealed by closing the inlet and
outlet and placed horizontally. A dark field method is used
for viewing from above and a high resolution digital charge-
coupled device~CCD! camera of 103731344 pixels is used
to capture the images at different stages of the evolution of
the froth. The experiment starts with about 20 000 bubbles,
and is about 10 000 in the scaling state defined by the sta-
tionary distribution of sides after about 4 h. However, the
topological charge becomes stationary at a much later time
with about 4000 bubbles. Runs with a similar initial condi-
tion have been recorded and only data with stationary topo-
logical charge will be reported in this paper.

In order to compare the physical froth with computer-
generated ones, we selected two examples of purely geomet-
ric constructions. The first one is the Voronoi construction
based on random Poissonian points. The second one is based
on the Voronoi construction generated by introducing small
perturbations to the triangular lattice, so that we mimic the
T1 transformation in real froth. We label the physical froth
by (S), the random Voronoi froth by (V), and the perturbed
one by (P). These two geometric constructions are two
simple examples of the random froth and slightly ordered
froth. The number of cells for these systems are 3206 for
(S), 3783 for (V), and 9634 for (P). The values ofm2 are
1.33 (S), 1.76 (V), and 1.51 (P). They all approximately
obey Aboav-Weaire’s law, with coefficienta equal, respec-
tively, to 1.2760.05 (S), 0.696 0.03 (V), and 0.956 0.07
(P).

In Fig. 2 the number of cells per layerKj is shown as a
function of the distancej for soap, and for Voronoi construc-
tion on a set of random points in the plane and on a perturbed
triangular lattice. For all systems this number increases lin-
early with the distance with slopes equal, respectively, to
9.4560.1 (S), 11.060.2 (V), and 9.9160.08 (P). These
linear behaviors indicate that these froths are Euclidean. Us-
ing expressions for the minimally correlated Euclidean froths

obtained in the previous paragraph, one can predict the
slopes 8.360.3 (S), 10.160.4 (V), and 9.160.7 (P).

The ratiosL of the defective cells with respect to the total
number of cells in a layer are very small in the second layer
@0.0173 (S), 0.05 (V), and 0.05 (P)#, then increase until
about the 15th layer, to stabilize finally at asymptotic values
equal to 0.1060.01 (S), 0.1560.01 (V), and 0.1360.01
(P), respectively. Using expression~42!, one can predict for
hL the values 0.136 (S), 0.23 (V), and 0.174 (P), respec-
tively. We independently measured the value ofh, which
gives 1.160.2 (S), 1.360.1 (V), and 1.260.1 (P), respec-
tively. We deduce that the value of defect concentrationL
using these values ofh and Eq. ~42! are L50.1160.03
(S), 0.1760.02 (V), and 0.1560.03 (P), respectively. This
compares reasonably well with the measured values ofL
~see Fig. 3!.

Figure 4 shows the total average charge^Q&/m2 vs j . This
quantity decreases with the distance, with an almost linear
behavior for j.2. The measured slopes are20.760.1 ~S!,
21.660.1 ~V!, and 21.3560.05 (P), respectively. Using
Eq. ~37! one predicts20.7360.03 (S), 21.3160.05 (V),
and21.0560.07 (P).

The topological charge contained inside the cluster delim-
ited by the generic shellj is an important physical parameter.
In the previous paragraph we showed that the quantity asso-
ciated with the shell-structured skeletonQj

sk should be con-
stant for Euclidean froths. In Fig. 4,̂Qsk&/m2 is plotted
~open symbols! in function of j for the different froths stud-
ied. One can note that in all the systems analyzed the quan-
tity ^Qsk&/m2 saturates at a value equal to about22.060.5
(S), 22.060.2 (V), and -1.860.2 (P). The saturation val-

FIG. 2. Total number of cells per layerKj in the j shell vs shell
number j for soap ~filled circle!, random Voronoi construction
~filled diamond!, and Voronoi construction from a perturbed trian-
gular lattice~filled square!. Total number of defectsKj

d in the j th
shell vs j for soap ~open circle!, random Voronoi construction
~open diamond!, and Voronoi construction from a perturbed trian-
gular lattice~open square!.
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ues should be similar for all three cases as^Qsk&/m2 is a
characteristic of the SSI skeleton.

VII. CONCLUSIONS

We studied froth as organized in concentric layers of cells
around a given central cell. Exact expressions for the number
of cells in each layer, for the topological charge inside the
shell cluster and for the average number of neighbors per cell
in a given layer were obtained. These topological properties
of the shell structure were studied for the special class of SSI
froths and for the general case where non-SSI defects are
present. It turns out that the defects play a very important
role in the organization of the froth structure. The defects
enlarge the freedom for the construction of the cellular sys-
tem around the germ cell by removing the constraints on the
topological charge associated with Euclidean froths. With
the relaxation of the constraints by the introduction of de-
fects, we find a solution of space-filling Euclidean froth
which has only nearest-neighbor correlations. In this solu-
tion, we calculated approximate asymptotic expressions for
Kj , Qj , andmj which satisfy the Aboav relation and which
are correlated only between first neighbors. Moreover, we
evaluated the average number of defects per layer. These
expressions are free of adjustable parameters, and describe
well the behaviors of measurable properties of real froths and
cellular patterns.

Experimentally we find that soap froth in the steady state
has an average number of cells per layer which grows lin-
early with the topological distance. The rate of growth is
about 9. Slopes of around 10 have been found for Voronoi
froths. These slopes are considerably larger than the 2p
value suggested by a simple geometrical consideration for
the ratio between the perimeter of the shell cluster and its
radius. Moreover, we found that in soap and Voronoi froths
the topological charge of the shell cluster is always negative

and decreases linearly with the size of the cluster. In particu-
lar, we observed that the slope is proportional to2m2, and
the coefficient of the proportionality is smaller than 1 in soap
froths and larger than 1 in computer-generated froths. The
number of defects per layer has also been measured. Soap
froths in the asymptotic limit have a percentage of defects
around 10%, whereas larger amounts were found for
computer-generated froths.

Our theory on asymptotic behaviors is in good qualitative
agreement with experiments. We correctly predict the linear
growth of the number of cells per layer with a slope around
9. We demonstrate the linear decrement in the topological
charge of the shell cluster with a slope above the line defined
by 2m2 in soap froths, and with a slope below the line
defined by2m2 in Voronoi froths. We also predict percent-
ages of defects per layer which are close to the experimental
values and are smaller in soap froths and larger in Voronoi
froths.

On the other hand, the quantitative agreement between the
approximated predictions and the experimental data is not
perfect. In the present paper we obtained exact relations for
the topological properties of the shell structure, but the pre-
dictions were formulated under strong assumptions which
simplify the exact results into expressions with no adjustable
parameters. The partial disagreement between the approxi-
mated predictions and the experimental data might indicate
that the assumptions utilized are too strong or incorrect.
Therefore there is still room for improvement.

FIG. 3. Defect concentrationL j vs shell numberj for soap
~open circle!, random Voronoi construction~open diamond!, and
Voronoi construction from a perturbed triangular lattice~open
square!.

FIG. 4. Normalized cluster topological chargeQj /m2 vs shell
number j for soap ~filled circle!, random Voronoi construction
~filled diamond!, and Voronoi construction from a perturbed trian-
gular lattice~filled square!. The straight line indicates the slope21.
Soap and computer-generated froths are on opposite sides of this
line. Normalized cluster topological charge of the skeleton,
Qj
sk/m2 vs shell numberj for soap~open circle!, random Voronoi

construction~open diamond!, and Voronoi construction from a per-
turbed triangular lattice~open square!. Note that the normalized
topological charge for the skeleton saturates at about the same value
for all cases.
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APPENDIX A: GENERALIZATION
OF WEAIRE’S SUM RULE

Consider ani cell of the froth withni sides, and a sum
over the number of sides of the set of cells at a topological
distance j from the i cell. Such a sum is equal to
mj (ni)Kj (ni), wheremj (ni) denotes the average number of
sides per cell in the layer distantj from the i cell, and
Kj (ni) the number of cells of this layer. Let us now sum this
quantity over all the cells of the system:( imj (ni)Kj (ni). In
this sum the number of edges of eachi cell of the froth is
counted a number of times equal to the number of cells at
distancej from this cell @e.g., the number of sides of the
generici cell is countedKj (ni) times and contributes to the
sum asniK j (ni)]. It follows that we have the identity

(
i
mj~ni !Kj~ni !5(

i
niK j~ni !. ~A1!

We can express this identity in term of the averages

^mjK j&5^nKj&, ~A2!

where^()& indicates the average over the cell-side distribu-
tions: ^()&5(np(n)() with p(n) probability of ann-sided
cell.

Equation~A2! is the generalization to the layerj of the
Weaire sum rule which is valid for the first layer~i.e.,
^m1n&5^n2&). For an arbitrarily large system~arbitrary
small boundary effects!, relation ~A2! is exact, and is also
valid in the presence of non-shell-reducible topological in-
clusions. One should note that in real finite systems the effect
of the boundary could be dramatically important.

APPENDIX B: CORRELATION AND FLUCTUATIONS

A froth is uncorrelated after a given topological distance
j if and only if for two cells with distantj.j, the probabil-
ity Cj (n,m) to have one withn sides and the other withm
sides factorizesCj (n,m)5sj (n)sj (m). It can be easily
proved that in a froth where the cells are uncorrelated after
the distancej, the average number of sides per cell (mj

un) in
a layer j.j must be independent of the number of sides of
the central cell. This is the physical consequence of the ab-
sence of correlations between the central cell and the cells in
the layerj . This therefore meanŝmj

unKj&5mj
un^Kj&. By us-

ing relation~A2!, we have

mj5mj
un5

^nKj&

^Kj&
562

^~62n!Kj&

^Kj&
~ for j.j!. ~B1!

The topological charge inside layerj is

Qj2Qj215~62mj !Kj5^~62n!Kj&1G j2G j21 .
~B2!

The second equality comes from Eq.~A2!. For j.j, we put
Eq. ~B1! into Eq. ~B2! to obtain, for the uncorrelated case,
the relation

G j5G j211^~62n!Kj&S Kj

^Kj&
21D ~ for j.j!. ~B3!

This is a recursive equation for the fluctuationsG j . There-
fore, in uncorrelated froths the topological charge fluctua-
tions are determined in terms of the other statistical proper-
ties of the shell system.

Consider, for example, a froth which is completely uncor-
related~topological gasj50). From Eq.~B3!, one obtains

G15S 11
m2

6 D ~62n!, ~B4!

where we used the identitiesK15n andG0562n. This re-
lation gives Aboav-Weaire’s law@G15(12a)(62n); see
text# with a coefficienta52m2/6.

APPENDIX C: PROOF OF THE CORRELATION
THEOREM OF EUCLIDEAN SSI FROTH

To prove this theorem, we first note that Eq.~5! implies

^Kj&56 j2(
i50

j21

^Qi&. ~C1!

In order to fill the two-dimensional Euclidean space, there
must be a minimumn such that̂ Kj&} j for j>n. This im-
plies that the cellular system must constrain the average to-
pological charge inside a shell to be independent on the shell
size j . Such a constraint forces the average charge inside the
layer j to be equal to zero forj>n>1 @see Eq.~13!#,

^Qj&2^Qj21&5^~62mj !Kj&

52(
i50

j21

^~62n!G i&

52m22(
i51

j21

^~62n!G i&50. ~C2!

Consequently, one obtains the following two conditions on
the fluctuationsG i :

(
i51

n21

^~62n!G i&52m2 for n>1, ~C3!

and

^~62n!G j&50 for j>n. ~C4!

In Appendix B we showed that in a system where the topo-
logical correlations vanish after thejth layer, the fluctuations
must satisfy the following relation forj.j @Eq. ~B3!#:

54 5491STATISTICAL PROPERTIES AND SHELL ANALYSIS . . .



^~62n!G j&5^~62n!G j21&1
^~62mj !Kj&

2

^Kj&
. ~C5!

If one supposesn.j and if we setj5n in Eq. ~C5!, Eqs.
~C2! and~C4! yield ^(62n)Gn21&50 which is in contradic-
tion with the definition of n ~for m2Þ0). This implies
n<j. An immediate consequence is that in a random SSI
froth where Aboav-Weaire’s law is satisfied with an arbitrary

a @i.e., G15(12a)(62n), for some generala#, the cells
must be correlated at least between third neighbors. Indeed,
n51 in Eq. ~C4! implies (12a)m250, or a51 if m2Þ0,
whereasn52 in Eq. ~C3! implies (12a)m252m2, or
a52 if m2Þ0. Both cases restricta to special values for
m2Þ0. It follows that if a is to remain a free parameter of
the froth,n>3. Since we have shown thatj>n, therefore
j>3.
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